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The States of Matter

The state a substance is in at a particular temperature and pressure depends on two antagonistic entities:



The kinetic energy of the particles

The strength of the attractions between the particles
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Liquid

Disorder; particles
or clusters of
particles are free

to move relative to
each other; particles
close together

Crystalline solid

Ordered arrangement;
particles are essentially
in fixed positions;
particles close together
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TABLE 11.1

Some Characteristic Properties of the States of Matter

Gas

Liquid

Solid

Assumes both the volume and shape of its container
Is compressible

Flows readily

Diffusion within a gas occurs rapidly

Assumes the shape of the portion of the container it occupies
Does not expand to fill container

Is virtually incompressible

Flows readily

Diffusion within a liquid occurs slowly

Retains its own shape and volume

Is virtually incompressible

Does not flow

Diffusion within a solid occurs extremely slowly
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Intermolecular

Forces

Intermolecular Forces

The attractions between molecules are not 

nearly as strong (1–50 kJ/mol)as the 

intramolecular attractions(150–1100 

kJ/mol) that hold compounds together.
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Intermolecular Forces

	The attractions between molecules are not nearly as strong (1–50 kJ/mol)as the intramolecular attractions(150–1100 kJ/mol) that hold compounds together.
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Intermolecular

Forces

Intermolecular Forces

They are, however, strong enough to control 

physical properties such as boiling and 

melting points, vapor pressures, and 

viscosities.
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Intermolecular Forces

	They are, however, strong enough to control physical properties such as boiling and melting points, vapor pressures, and viscosities.
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Intermolecular

Forces

Intermolecular Forces

These intermolecular forces as a group are 

referred to as van der Waals forces.


Microsoft_PowerPoint_Slide6.sldx
Intermolecular Forces

	These intermolecular forces as a group are referred to as van der Waals forces.
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Intermolecular

Forces

van der Waals Forces

• Dipole-dipole interactions

• Hydrogen bonding

• London dispersion forces
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van der Waals Forces

Dipole-dipole interactions

Hydrogen bonding

London dispersion forces
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Intermolecular

Forces

Ion-Dipole Interactions

• A fourth type of force, ion-dipole interactions 

are an important force in solutions of ions.

• The strength of these forces are what make it 

possible for ionic substances to dissolve in 

polar solvents.
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Ion-Dipole Interactions

A fourth type of force, ion-dipole interactions are an important force in solutions of ions.

The strength of these forces are what make it possible for ionic substances to dissolve in polar solvents.
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Dipole-Dipole Interactions

• Molecules that have 

permanent dipoles are 

attracted to each other.



The positive end of one is 

attracted to the negative 

end of the other and vice-

versa.



These forces are only 

important when the 

molecules are close to 

each other.
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Dipole-Dipole Interactions

Molecules that have permanent dipoles are attracted to each other.

The positive end of one is attracted to the negative end of the other and vice-versa.

These forces are only important when the molecules are close to each other.
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The interaction between any
two like charges is repulsive
(dashed blue lines).
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Forces

Dipole-Dipole Interactions

The more polar the molecule, the higher 

is its boiling point.
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Dipole-Dipole Interactions

	The more polar the molecule, the higher is its boiling point.
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TABLE 11.2 Molecular Weights, Dipole Moments, and Boiling Points

of Several Simple Organic Substances

Molecular Dipole Moment  Boiling Point
Substance Weight (amu) m (D) (K)
Propane, CH3CH,CH3 44 0.1 231
Dimethyl ether, CH;0CH3 46 1.3 248
Methyl chloride, CH3Cl 50 1.9 249
Acetaldehyde, CH;CHO 44 2.7 294
Acetonitrile, CH;CN 41 3.9 355
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Forces

London Dispersion Forces

While the electrons in the 1sorbital of helium 

would repel each other (and, therefore, tend 

to stay far away from each other), it does 

happen that they occasionally wind up on the 

same side of the atom.
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London Dispersion Forces

	While the electrons in the 1s orbital of helium would repel each other (and, therefore, tend to stay far away from each other), it does happen that they occasionally wind up on the same side of the atom.
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Forces

London Dispersion Forces

At that instant, then, the helium atom is polar, 

with an excess of electrons on the left side 

and a shortage on the right side.
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London Dispersion Forces

	At that instant, then, the helium atom is polar, with an excess of electrons on the left side and a shortage on the right side.
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Intermolecular

Forces

London Dispersion Forces

Another helium nearby, then, would have a 

dipole induced in it, as the electrons on the 

left side of helium atom 2 repel the electrons 

in the cloud on helium atom 1.
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London Dispersion Forces

	Another helium nearby, then, would have a dipole induced in it, as the electrons on the left side of helium atom 2 repel the electrons in the cloud on helium atom 1.
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Intermolecular

Forces

London Dispersion Forces

London dispersion forces, or dispersion 

forces, are attractions between an 

instantaneous dipole and an induced dipole.
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London Dispersion Forces

	London dispersion forces, or dispersion forces, are attractions between an instantaneous dipole and an induced dipole.
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Forces

London Dispersion Forces

• These forces are present in allmolecules, 

whether they are polar or nonpolar.

• The tendency of an electron cloud to distort in 

this way is called polarizability.
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London Dispersion Forces

These forces are present in all molecules, whether they are polar or nonpolar.

The tendency of an electron cloud to distort in this way is called polarizability.
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Forces

Factors Affecting London Forces

• The shape of the molecule 

affects the strength of dispersion 

forces: long, skinny molecules 

(like n-pentane tend to have 

stronger dispersion forces than 

short, fat ones (like neopentane).

• This is due to the increased 

surface area in n-pentane.
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Factors Affecting London Forces

The shape of the molecule affects the strength of dispersion forces: long, skinny molecules (like n-pentane tend to have stronger dispersion forces than short, fat ones (like neopentane).

This is due to the increased surface area in n-pentane.
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Forces

Factors Affecting London Forces

• The strength of dispersion forces tends to 

increase with increased molecular weight.

• Larger atoms have larger electron clouds, 

which are easier to polarize.
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Factors Affecting London Forces

The strength of dispersion forces tends to increase with increased molecular weight.

Larger atoms have larger electron clouds, which are easier to polarize.
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TABLE 11.3 Boiling Points of the Halogens and the Noble Gases

Halogen Molecular Boiling Noble Molecular Boiling
Weight (amu)  Point (K) Gas Weight (amu)  Point (K)
F, 38.0 85.1 He 4.0 4.6
Cl, 71.0 238.6 Ne 20.2 27.3
Brp 159.8 332.0 Ar 39.9 87.5
I, 253.8 457.6 Kr 83.8 120.9
Xe 131.3 166.1
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Intermolecular

Forces

Which Have a Greater Effect:

Dipole-Dipole Interactions or Dispersion Forces?

• If two molecules are of comparable size 

and shape, dipole-dipole interactions 

will likely be the dominating force.

• If one molecule is much larger than 

another, dispersion forces will likely 

determine its physical properties.
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Which Have a Greater Effect:
Dipole-Dipole Interactions or Dispersion Forces?

If two molecules are of comparable size and shape, dipole-dipole interactions will likely be the dominating force.

If one molecule is much larger than another, dispersion forces will likely determine its physical properties.
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How Do We Explain This?

• The nonpolar series 

(SnH

4

to CH

4

) follow 

the expected trend.

• The polar series 

follows the trend 

from H

2

Te through 

H

2

S, but water is 

quite an anomaly.
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How Do We Explain This?

The nonpolar series (SnH4 to CH4) follow the expected trend.

The polar series follows the trend from H2Te through H2S, but water is quite an anomaly.
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Hydrogen Bonding

• The dipole-dipole interactions 

experienced when H is bonded to 

N, O, or F are unusually strong.

• We call these interactions 

hydrogen bonds.
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Hydrogen Bonding

The dipole-dipole interactions experienced when H is bonded to N, O, or F are unusually strong.

We call these interactions hydrogen bonds.
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Hydrogen Bonding

Hydrogen bonding 

arises in part from the 

high electronegativity 

of nitrogen, oxygen, 

and fluorine.

Also, when hydrogen is bonded to one of those 

very electronegative elements, the hydrogen 

nucleus is exposed.
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Hydrogen Bonding

	Hydrogen bonding arises in part from the high electronegativity of nitrogen, oxygen, and fluorine.

Also, when hydrogen is bonded to one of those very electronegative elements, the hydrogen nucleus is exposed.
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Summarizing Intermolecular Forces
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Summarizing Intermolecular Forces
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Intermolecular

Forces

Intermolecular Forces Affect 

Many Physical Properties

The strength of the 

attractions between 

particles can greatly 

affect the properties 

of a substance or 

solution.
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Intermolecular

Forces

States of Matter

The fundamental difference between states of 

matter is the distance between particles.
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Intermolecular Forces Affect Many Physical Properties

	The strength of the attractions between particles can greatly affect the properties of a substance or solution.
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Forces

Viscosity

• Resistance of a liquid 

to flow is called 

viscosity.

• It is related to the ease 

with which molecules 

can move past each 

other.

• Viscosity increases 

with stronger 

intermolecular forces 

and decreases with 

higher temperature.
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Viscosity

Resistance of a liquid to flow is called viscosity.

It is related to the ease with which molecules can move past each other.

Viscosity increases with stronger intermolecular forces and decreases with higher temperature.
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TABLE 11.4 Viscosities of a Series of Hydrocarbons at 20°C

Substance Formula Viscosity (kg/m-s)
Hexane CH;CH,CH,CH,CH,CHj 326 * 1074
Heptane CH3CH2CH2CH2CH2CH2CH3 4.09 * 10_4
Octane CH3CH2CH2CH2CH2CH2CH2CH3 5.42 * 10_4
Nonane CH3CH2CH2CH2CH2CH2CH2CH2CH3 7.11 * 10_4
Decane CH3CH2CH2CH2CH2CH2CH2CH2CH2CH3 1.42 * 10_3
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Forces

Surface Tension

Surface tension 

results from the net 

inward force 

experienced by the 

molecules on the 

surface of a liquid.
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Surface Tension

	Surface tension results from the net inward force experienced by the molecules on the surface of a liquid.
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Intermolecular

Forces

Energy Changes Associated 

with Changes of State

• Heat of Fusion:Energy required to change a 

solid at its melting point to a liquid.
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Energy Changes Associated with Changes of State

 Heat of Fusion:  Energy required to change a solid at its melting point to a liquid.
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Energy Changes Associated 

with Changes of State

• Heat of Vaporization: Energy required to 

change a liquid at its boiling point to a gas.
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Energy Changes Associated with Changes of State

 Heat of Vaporization:  Energy required to change a liquid at its boiling point to a gas.
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Types of Bonding in 

Crystalline Solids
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States of Matter

	The fundamental difference between states of matter is the distance between particles.
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Types of Bonding in Crystalline Solids
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TABLE 11.7 Types of Crystalline Solids

Type of Form of Unit
Solid Particles Forces Between Particles Properties Examples
Molecular Atoms or London dispersion Fairly soft, low to moderately Argon, Ar; methane,
molecules forces, dipole-dipole high melting point, poor CHy4 ;sucrose,
forces, hydrogen thermal and electrical CipH,011; Dry
bonds conduction Ice™, CO,
Covalent- Atoms connected Covalent bonds Very hard, very high melting Diamond, C; quartz,
network in a network of point, often poor thermal SiO,
covalent bonds and electrical conduction
Tonic Positive and Electrostatic Hard and brittle, high melting ~ Typical salts—for
negative ions attractions point, poor thermal and example, NaCl,
electrical conduction Ca(NO3),
Metallic Atoms Metallic bonds Soft to very hard, low to All metallic

very high melting point,
excellent thermal and
electrical conduction,
malleable and ductile

elements—for
example, Cu, Fe,
Al, Pt
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Covalent-Network and

Molecular Solids 

• Diamonds are an example of a covalent-

network solid in which atoms are covalently 

bonded to each other.



They tend to be hard and have high melting 

points.
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Covalent-Network and
Molecular Solids 

Diamonds are an example of a covalent-network solid in which atoms are covalently bonded to each other.

They tend to be hard and have high melting points.







Intermolecular

Forces

29





image2.jpeg







image1.png









Covalent-Network and
Molecular Solids

- Dismonds are sn example ofa covalent-
ettt <ol n wnich stoms & covalznty
bonded io szch otner.

Ty tend o et snd e g g

= =






image30.emf
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Covalent-Network and

Molecular Solids 

• Graphite is an example of a molecular solid in 

which atoms are held together with van der 

Waals forces.



They tend to be softer and have lower melting 

points.
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Covalent-Network and
Molecular Solids 

Graphite is an example of a molecular solid in which atoms are held together with van der Waals forces.

They tend to be softer and have lower melting points.
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Forces

Metallic Solids

• Metals are not 

covalently bonded, but 

the attractions between 

atoms are too strong to 

be van der Waals 

forces.

• In metals, valence 

electrons are 

delocalized throughout 

the solid.
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Metallic Solids

Metals are not covalently bonded, but the attractions between atoms are too strong to be van der Waals forces.

In metals, valence electrons are delocalized throughout the solid.
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Intermolecular

Forces

States of Matter

Because in the solid and liquid states 

particles are closer together, we refer to them 

as condensed phases.
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The States of Matter

• The state a substance is 

in at a particular 

temperature and 

pressure depends on 

two antagonistic entities:



The kinetic energy of the 

particles



The strength of the 

attractions between the 

particles


